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ABSTRACT

We- consider, the problem of computing the stationary flows of a

viscoelastic fluid flowing through a given domain. The proposed numerical

method is based on optimal control techniques, which replace the original

equations of the problem by a minimization problem to be solved by a descent

method. Such techniques are very powerful and can handle equations which

change type, provided that, as done here, one uses an adequate preconditioning

strategy and that one computes efficiently the gradient of the function to be
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SIGNIFICANCE AND EXPLANATION

We consider the problem of computing the stationary flows of a

viscoelastic fluid flowing through a given domain. The proposed numerical

method is based on optimal control techniques, which replace the original

equations of the problem by a minimization problem to be solved by a descent

method. Such techniques are very powerful and can handle equations which

change type, provided that, as done here, one uses an adequate preconditioning

strategy and that one computes efficiently the gradient of the function to be

minimized.
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OPTIMAL CONTROL TECHNIQUES FOR COMPUTING

STATIONARY FLOWS Or VISCOELASTIC FLUIDS

Patrick Le Tallec*

I. INTRODUCTION

The objective of this paper is to present from a basic numerical

point of view a new class of methods for the numericalcalculation of

viscoelastic flows. These methods consist in

i) rewriting the governing equations as a least-squares problem.

Here, it is critical to use the right norms and to introduce

a preconditioning operator. For example, working with the quan-

tities fn Idiv a - f 12 dx is completely inadequate and is wrong

from a functional analysis point of view. In this paper, the

preconditioning strategy will rely on the introduction of a pi-

vot space;

(ii) solving the resulting minimization problem by a Finite Element

Method associated to a conjugate gradient or to a Quasi-Newton

algorithm.

This paper first introduces the governing equations of the problem

(§2) and rewrites them as a least-squares (or optimal control) problem

(§3).The practical calculation of the cost function and of its gradient

is then discussed (§4) and several descent methods for solving the resul-

ting minimization problem are presented (§5). Some details on the practical

implementation of these ideas and numerical results are finally presented

(§6 and §7).

Service de Mathimatiques, Laboratorie Central des Ponta et Chaussdes
58, Boulevard Lefebvre, 75015-Paris, France.

Sponsored by the United States Army under Control No. DAAG29-80-C-0041.
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The framework of the paper will be rather general and could be used

for the derivation and the study of different classes of numerical methods.

Moreover, although introduced on a standard steady state problem, it can

be easily adapted to the solution of true evolution problems, of pseudo

evolution problems (time marching techniques) or to an arc length continua-

tion approach (GLOWINSKI [1984, p.20 6 ]). In any case, in the proposed methods,

approximation errors can be made very small and change of type in the gover-

ning equations should not be damaging as seen from the analogy with transonic

flow computations.

2. EQUATIONS OF THE PROBLEM

Let us consider a viscoelastic fluid (say of upper-convected Maxwell

type), flowing viscously through a given domain n (Fig.1). We suppose that

4,. no slip occurs along the solid walls and that the fluid velocity at the

entrance and at the exit of the domain is given.

(x.y) = (0.0) uO

Ih-- I -

Y, Y

0!--- q--

/_ P

XI

Figure 1 - The physical problem

(out of Malkus f19841)
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For example, such situations arise while studying plane flows over

slots, such as those studied experimentally by Bird and al. [1982 1. The

equations governing such situations are simply

(1) EQUILIBRIUM

-div(o) + p(u*V)u - f in 1,

(2) CONSTITUTIVE LAW (upper-convected Maxwell)

' 2 D - ~

r f exp(-)[)(F)Ft)- - jJd,

axt (x,r)
zt(Xt) " a! '

X (x,r) = position at r of the particle which is in x at time

t and which is subjected to the velocity field u.

(3) KINEMATIC RESTRICTIONS

div u -0, u- u on r

Above, u represents the fluid velocity, a the Cauchy stress tensor, p a

hydrostatic pressure, p the fluid density, v the fluid viscosity and X

the relaxation time. Observe that, as an extra boundary condition, the

constitutive law (2) requires the knowledge of what happened to the fluid

before it enters the domain.

It has been observed in Joseph, Renardy, Saut [1984 1, that these

equations change type when the viscoelastic Mach number U/40uAP reaches I

(U is a characteristic velocity of the considered flow). Real characteristics

then appear along which the vorticity can be discontinuous. However, most

numerical methods employed for solving ()-(3) (such as the classical fixed

point method solving iteratively for the velocities and then for the stresses)

cannot handle this change of type.

-3-
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The idea of this paper is to employ for the numerical solution of

(1)-(3) optimal control techniques in a dual space, which were used with

success in transonic flow computations (GLOWINSKI [1984 ]), where a similar

change of type occurs.

3. LEAST-SQUARES FORMULATIONS OF THE PROBLEM.

3.1. A one-dimensional model problem. Let f : R- R be differentiable

and consider the problem of solving numerically the nonlinear equation

f(x) = 0 .

If it has a solution in 1, then this equation is equivalent to

Minimize - jf(x)1 2 over IR, (a > 0)

problem which can be numerically solved by the gradient algorithm

+ x0 - given

+ for n - 0 until satisfied set

x! 2 f(xn)f,(X)
Xn+ 1  n nxn

This algorithm can be a very efficient method for solving f(x) - 0, provided

that a is properly chosen and that f(x)f'(x) is easy to compute. It will be

the basis of the numerical technique that we will use to solve ()-(3).

3.2. Maxwell viscoelasticity in primal variables. Let V be the space

for the unknown velocity. Here, we take

V - {wE H1 (n) , div w -0)

whose topological dual we denote by V*. Let us also introduce the auxiliary

unknown z = Pu, P being a given isomorphism from V onto a Hilbert space H,

H with scalar product (.,.) and H identified to its dual. The interest of

the auxiliary unknown is that, for P properly chosen, the viscoelastic pro-

blem may be better conditioned with respect to this new unknown, and

-4-



therefore easier to solve numerically. In other words, P is a precon-

ditioning operator. For example, one can think of defining P u as curl

u, H as the image of V by P and (.,.) as the L2 scalar product. The

vorticity curl u will then be the primary variable, which might be a

very good choice because vorticity is the canonical variable appearing

in the analysis of change of type. Another choice of P, for which again

P TP is equal to the Stokes operator, will be proposed at the finite element

level in §5.

Finally, once V and P defined, let us introduce

L V- IR, L(w) - fnf. wdx

T V V*,

< T(u ),w > - f"n((u.V)u.w + ZD(U).(Vw + VT)} dx,

Y E V, u - U + Uo, aD(u) being given

through the constitutive relation (2).

With these notations, summarized in the following diagram

V T V*3L

H

equations (1) to (3) take the form

(4) T(u- u,)-L - 0 in V* , u- u, EV.

If (4) has a solution, then it is obviously equivalent to the H least-

squares formulation

-5-

1~



MINIMIZE J(v) - (PZ(V), P~(v)) OVER H

WHERE Z(Q) E V IS THE SOLUTION OF THE LINEAR PROBLEM

Indeed, if (4) has a solution uoi=u-u, and if we set v = z= P(uo)
-40 -0 -10

* I in (5), then the right-hand side of (5) is equal to zero, thus the asso-

ciated state vector Z(zo) is also equal to zero and therefore J(z_) is

equal to zero. Since, by definition, J(.) is always positive on H, this

implies that z is a minimizer of J over H.

Conversely, let z be a minimizer of J over H. As seen above, since

(4) has a solution, J attains the value 0 on H and therefore J(z ) must be
10

equal to 0. By definition of J, this can only happen if y(zo) is equal to 0,

that is if T(P z )-L-0 in V*, which means that P-(zo) is then a solution
of (4).

In summary, if we assume the existence of a solution to our original

problem (1)-(3), we can replace these equations by the equivalent minimiza-

tion problem just written above. This minimization formulation is the one

which will be used in our numerical techniques. It reduces our initial pro-

blem to an optimal control problem, if we identify X to a control variable,

to a state vector, (5) to a state equation and J(-) to a cost function.

Here, the state vector belongs to the velocity space, which relates

to some extend this formulation to the one used by TANNER [1985 1, or by the

other authors for which the velocity is the working variable.

3.3. Arclength continuation in mixed variables, To illustrate the

,c many directions in which the above optimal control framework can be applied,

we will briefly and formally discuss another least squares formulation of

problem (1)-(3). It is based on the approach of CROCHET and al (19851 or of

BERIS, AMSTRONG and BROWN [1985 1 , among others, in which the original pro-

blem is written in mixed variables (velocity + added stress) and is put in-

side an arclength continuation framework.

-6-
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With the notations of §3.2, let us first introduce the space E of

added-stress fields, the space X of trial functions and the operator m

from Rx V x E into V* x X*, respectively defined by

Z -{(TE H 1), -0o on r-) ,

X= {TE '((), T=o onr + l .

r-(resp. r + ) o {z(r,.( ). (x)< 0resp.>o)},

< T (X ,u ,a ,,g ', > "Ia ( Q' j)-'V wi". Dv T )

* D-C-X(U.V -,2)TZ - +T ) +0 - A + VuT )).Tldx

+fJ " u.rt da, V{L)t,; EV x X,
r

w = u , D = o + a+ JVu+VT.i u and corresponding to the

given boundary velocities and input added stresses.

Now, following the strategy of CROCHET [1985 ], writing the constitutive

law under a differential form and integrating by parts, the arclength conti-

nuation problem associated to (I)-(3) can be written

SFind u, , xl (0,8] - V x E x R such that

X(O)-O, a (0) O, u (O)+Z Stokes solution;

(6)

<. TC((s),u (s),a (s)), (,)>=0,V {W,T) E V xX, Vs E [0,S]

.P 
2 + d% 22

After discretization in a, we obtain

'a -7-
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' i

Vn>O, find {unn, nAn E V x E x It such that

< T (Xn un, cn),(wZ) > 0, V {w,T} E V x X

(Pu u-1 u-1 u -2 +( n-1 n-1 n2

-0 1 - 0 110 -.0 -0 "'0

+ (,n _n-. 1 ) 2,+ -X ) =s

from which we derive our final least-squares formulation of the arclength

continuation problem

V n>O, Minimize the cost function (residual dual norm)

J(,z ,a )_1 fpZI 2 + 1 iZoi2 + 12
-, -,o2 H 2 HI

over the control space ]R x H x Z, the state vector (residual) {La*, )

(7) in V x X x FR being defined through the state equation

(Fyl w). + - < T (0,P z ,a ),(w,T)>, Y{v,T) E V x X,

2 n_1 2 nl n- 1  n-2  n- n-1 l n-2

S-As-(- ,z ,z )-(-a ,1 - )

Observe that (7), as it must do, deals with the right dual norms of the

residuals, and that it is in fact equivalent to the standard discretiza-

tions of (6) used in the litterature.

4. CALCULATION OF THE COST FUNCTION AND OF ITS GRADIENT

The minimization formulations of §3, although equivalent to classical

ones, are very interesting because they can be solved by a different class of

stable numerical algorithms. Indeed, any available descent method (conjugate

gradient, Buckley-Lenir, Quasi-Newton...) can be successfully used for their

numerical solution. The practical implementation of such methods only requi-

res the knowledge, at given controls v, of the cost function J(v) and of its
gradient J'(v).

pp .
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Now, the cost function being a quadraticfunction of the state vector,

the latter being the image of a nonlinear complicate operator acting on the

control vector, the computation of J or of J' is not an easy matter. Never-

theless, even in the more complex situation of §3.2, and unlike a classical

Newton method which would require O(N ) operations (N-dim V) to compute this

gradient, the computation of J' can be done in O(N 2) operations by introdu-

cing an adjoint state vector which reduces this computation to the explicit

integration of functions locally defined on the support of each trial func-

tifon.

To see that, in the framework of §3.2, let us introduce the adjoint

state G(v) defined as

(8) G(v) (xt) = exp( ( (x,T)) (xT)dT,

with

D I(V( + VZ T
2= ( -(v) _)) if x E n

D=0 if x f n

(9) ax

-t ax,)

X (x,T) - position at time T of the particle which

is in x at time t and which is subjected

to the velocity field u (x) = -u(x).

This adjoint state can be computed by an explicit integration along the

trajectories of u-P (v)+u . Then, we can prove

THEOREM : The gradient J'(X) is the solution of the linear problem

(10) (J'(v), N) = f{(X.V)u + (u.V)w.y(v)dx

+f T T- {l(W +Vw ) + XQX) w - (. ,)v)dx,Y wEV.

Proof : By definition of the gradient, we have

(W'(v),z) lim [J(v + tz) - (v)= (P',' P- )

-9-
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where = -(v) is the solution of the state equation (5) and where 8X

is obtained from z by differentiation of (5), that is by solving

_1 _1
(P6Z, Pw) =<T'(P v).P z, w>, VwEV

Substituting this definition of 
6x. in the expression of the gradient,

we get

(yv)) =<T'(P v).P z, V >.

Denoting P z by w, and from the definition of T(.), this gives

(11) (J'(v), N) = f {p( w.)u + p(u.V,)).,dx +f [, (u).wi.D()dx

with D(Z) f . (V +VX ). In (11), to compute the action of the derivative

of 2,(u) on w, we differentiate the constitutive law (2), first with

respect to time, then with respect to the velocity u. We obtain

.= (u).w satisfies the differential equation

(u.V)i - A"u)T - AT(Vu) T +

(12)

2iD(w) - (w.1)2a (u) + X t)2D(U) + AZD(U)(VX)

r - 0 on r- (- part of r withu .n< 0).

On the other hand, by differentiating the adjoint state equation (8)

with respect to time, we have

(13) J Z.,R(Xdx=f . Xpt - N(V2T. - XG(Vj) + G 1dx

Integrating (13) by parts, and taking the incompressibility constraint

div u = 0 into account, (13) yields

fwhc() d~x- A[ - Vu) T  
QZ)j + T ]dX

which from (12) is equivalent to

(14) fJ'D(X)dx j.{2uD(w) - + X )D + X D(V ) T

-10-
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Plugging (14) back in (11) finally gives (10) and our proof is complete. 0

With this theorem, the computation of J(X) and J'() reduces to the

following sequence of operations.

(i) Solve Nw v in H, w E V;
(ii) Compute ZD(w+u) by integration of the constitutive law (2)

(iii) Compute the right-hand side r of the state equation (5);

(iv) Compute the state vector X by solving the linear problem (5)

(v) z - >

(vi) Compute the adjoint state G by integration of (8);

(vii) Compute the right-hand side of the gradient equation (10)

(ix) Compute J'(Q) by solving the linear problem (10).

In summary, for the least squares formulation (5), the computation of J and
of J' requires two integrations in time and the solution of four linear problems

associated to the fixed operators P or PT

5. A TYPICAL CHOICE FOR THE DESCENT METHOD AND FOR THE PRCONDITIO-ING

OPERATOR

We still consider the framework of §3.2 and we now suppose that V is
approximated by a finite dimensional space Vh with basis (,)i= ,N, to which

we associate the matrix.

A-(Ai) , Aij- 2 u R(Ti).D(.)dij iinl,N,jinl,N 12 -.

We then define P as the Choleski factorization of A (PTP-A, P lower trian-

gular), H as RN and (.,.) as the canonical scalar product on RN

With this choice of P and H, the minimization problem (5) can be
solved by the standard Polak Ribiare conjugate gradient method given below

-11-



x 0 given;

x g0 =J'(V 0 ) as computed in §4

x

for n> 0, with vn and wn known, and until satisfied, do -

x solve J(v- n , n - nERP EU,

(use quadratic interpolation, for example)

n+I  n n

n+ I  . n+I

x L = J'(v ) as computed in §4

n+I nP n +I n+1 n n: x • " A - h€

The numerical results given below were obtained by solving (5) with

this Polak-Ribiare algorithm. To accelerate convergence, we have recently

replaced this algorithm by the one described in BUCKLEY and LENIR [19831,

- which begins by a few steps of a BFGS method and which then switches to a

conjugate gradient method using the last BFGS update of the Hessian as an

additional preconditioning matrix. Again, the practical implementation of

this last method only requires the knowledge of J and J', as obtained from

§4, and only involves the solution of linear systems which are associated

to fixed positive definite symetric sparse matrices and which are thus

cheap to solve even for N large. On (5), this last algorithm gives compa-

rable results but appears more robust than the original Polak-Ribi&re me-

thod.

6. NUMERICAL IMPLEMENTATION

In the framework of §3.2, the implementation on a computer of the tech-

niques of §4 and §5 requires the solution of two numerical problems

i) what type of approximation can be used for the space V of

velocity fields ?

(ii) for a given velocity field, what numerical technique can be used

-12-



for the integration in time of the constitutive law and of the adjoint

state equation?

F - Those problems are strongly interconnected since, for example, the fi-

nite element which is used determines the aspect of the computed trajecto-

ries. D. Malkus [ 1984] proposes answers which are very attractive because
they respect the physical structure of the problem. His technique decomposes

as follows

Ui) choice of an exactly incompressible piecewise linear finite element

(such as. the linear crossed triangle) for approximating the velocity field;

%'

The original pieceuuiso linear
Finite Ileset made of four
linear crossed triangles.

Waesh of the domain.

Figure 2 -Linear Crossed Triangles

(ii) exact computation of the trajectories incoming at the center of
each finite element through a piecewise analytical solution of the ordinary

differential equation

I *T - u IXt(xT)1 , Xt(it,t) x

(iii) cowmputation of the deformation gradient history by solving analy-
tically the equation

:F (X,(Z.T)) MjUX (x)I4F (Xtx)) (xt ±

-13-
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(iv) computation of the added stresses g. by a Laguerre type numerical

quadrature

NT
0('t)- t m,() [F,(x,T)] dTw Z W(r )m (T) (F (x,T))-'t' - i-I=1 .- 2

The numerical quadrature of (iv) slightly changes the constitutive law

but respects its objectivity since the trajectories and deformation gradients

are exactly computed.

For a viscoelastic fluid with a more complicated differential constitu-

tive law, the Laguerre quadrature is replaced by a forward numerical integra-

tion of the constitutive law on the computed trajectories, using an automatic

time stepping strategy. In the case of an evolution problem, the integration

in (iv) is only performed between times tn and tn+1, which is then much cheaper.

f
In summary, if we use D. Malkus ideas, our numerical technique for the

solution of (M)-(3) finally reduces to

I) the transformation of the original equations (I)-(3) into an equiva-

lent minimization formulation (§3).

2) the solution of this minimization problem by a standard descent

technique (§5),

3) the approximation of the velocity fields by linear crossed - trian-

gular finite elements (§6),

4) the construction of a preconditioning operator by a Choleski facto-

rization of the Stokes operator,

5) the numerical integration of the constitutive laws by a numerical

quadrature on the analytically computed trajectories (§6).

As described the method is expected to be stable, even if there is change

of type (this is typical of a dual least-squares approach), and accurate (ve-

ry little approximation appears in the integration of the constitutive laws).

-14-
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Moreover, although mainly illustrated in the upper-convected Maxwell-

case, the method can be applied to any constitutive model which reduces

to a differential equation. In particular, for such models, the gradient

J'(.) can still be computed as in §4, simply by replacing (13) by the

transpose of the differential equation defining '(;.w.

Nevertheless, the method appears to be very expensive, especially

in the steady case where almost all the computation time is used for

the exact calculation of the trajectories at a given velocity field. In

that respect, the mixed formulation of §3.3 appears more attractive

because there no such calculation is needed.

7. NUMERICAL RESULTS

We consider below the numerical study of the plane stationary flow

over a slot of an upper-convected Maxwell fluid. The domain and the boun-

dary conditions of the flow are those of Fig.I, and its associated Deborah

and Reynolds number are respectively De-.75 and Rem.86 10- 4 (Deborah number

product of the fluid relaxation time by the @hear rate of the incoming

fluid at the solid wall). The aspect of the streamlines inside the slot

and of the hydrostatic pressure profiles are represented on Fig.3 and 4.

The computation was done on a Cray 1, with the finite element mesh

represented on Fig.2 (961 nodes), and using the Polak-Ribigre algorithm of

§5. Fifteen iterations were required for an execution time of 12 mn. More

than 952 of this time was devoted to the analytical computation of the tra-

jectories, to be done twice per iteration. This indicates that our stra-

tegy for the computation of the trajectories should be revisited in the sta-

tionary case, and that it may be better there to use the mixed formulations

of §3.3.

-15-
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1D

SLOT
DE = .75 RO = .332338e-3
It1rallo, 15

Figure 3 - Streamlines inside the plot
(rising flow)
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SLOT press ,,
DE =.75 . Rs =.000332338
iorafios 15

Figure 4 - Hydrostatic pressure profiles
(rising flow)
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